About this white paper

The white paper presents the Danish concept of Hospital Logistics and ground-breaking solutions that contribute to making Danish hospitals more efficient and improve patient safety and treatment quality. It is part of a series of white papers that show how Danish solutions can contribute to increase efficiency in healthcare while empowering patients and staff.

Danish healthcare innovation is not exclusive for the Danes: many years of global presence show that our healthcare products and solutions create value internationally. Danish ideas and products are used every day in hospitals, medical clinics, ambulances, and nursing homes across the world.

We hope to inspire you and would like to invite you to Denmark to learn more about the Danish healthcare system.

Photo credits

Foreword: Anne Mette Kleis-Kristoffersen, Mymind
Page 6: Henrik Bendix Olsen, Project Manager, Region Zealand
Page 7 (air photo): Region Zealand
Page 8-9: Systematic
Page 11, top: Line Bloch Klostergaard, Communications Department, Aalborg University Hospital
Page 11: Lasse Høj Nielsen, Communications Department, Aalborg University Hospital
Page 14-15: Bjørn Sørensen, Communications Team, Hospital of Southern Jutland
Page 22: Medic GUH V/S
Page 23: Intelligent Systems

Editor in Chief
Healthcare DENMARK, Hans Erik Henriksen, heh@healthcaredenmark.dk

Steering Committee
Danish Ministry of Health, Martin Nyrop Holgersen, mnh@sum.dk
Danish Regions, Simon Nørregaard Jensen, snj@regioner.dk
Hospital of Southern Jutland, Sten Fibæk-Jensen, sten.fibaeck-jensen2@rsyd.dk
New Aalborg University Hospital, Lars Esko, laeb@rn.dk
Systematic, Henrik Jespersen, henrik.jespersen@systematic.com

Contributors
Danish Ministry of Health, Martin Nyrop Holgersen, mnh@sum.dk
Danish Regions, Simon Nørregaard Jensen, snj@regioner.dk
Gibotech, Henrik Anker, ha@gibotech.dk
Hospital of Southern Jutland, Poul Martin Møller, pmm@rsyd.dk
Intelligent Systems, Pia Bach Munch, pia@intelligentsystems.dk
Intelligent Systems, Ole Klinkby, ok@intelligentsystems.dk
Lyngsoe Systems, Keld De Nielsen, knd@lyngsoesystems.com
New Aalborg University Hospital, Tobias Westh-Clemmensen, twc@rn.dk
New Arhus University Hospital, Gert Sørensen, hanne.sejersen@rm.dk
North Zealand Hospital, Helle Alsbæk, helle.alsbaek@regionh.dk
Systematic, Jacob Gade, jacob.gade@systematic.com
TIMEDICO, Karin Jansen, kj@tempus600.com

Healthcare DANMARK’s partners:

Healthcare Logistics white paper version 1, January 2017
Executive summary

Healthcare systems around the world are challenged by an increased share of elderly citizens and chronically ill patients as well as more expensive forms of treatment. These factors are causing a significant demand pull in terms of treatment needs as well as expectations, which accentuate the need for our healthcare systems to work smarter on all levels. Therefore, hospitals need to consider means to increase efficiency and productivity in order to be able to treat more patients without increasing costs.

For more than a decade, Danish hospitals and companies have worked together on improving logistics in hospitals. The overall aim has been the creation of just-in-time solutions in order to optimize coordination and efficiency and reduce the patients’ length of stay. In Denmark, the focus on hospital logistics has played an important role in achieving a 30 pct. increase in hospital productivity since 2003. This white paper demonstrates the possibilities for hospital logistics within different areas of hospital services and needs, including supply logistics, clinical logistics, sterile goods and sample logistics.

‘Just-in-time’ logistics

At the New Aarhus University Hospital, a fine-meshed IT system will enable real-time localization of people and equipment right down to room level.

At Aalborg University Hospital, the introduction of a similar and new solution has resulted in a close to 20 pct. efficiency increase. Danish solutions for just-in-time logistics include systems for locating and tracking staff and equipment, solutions for automating basic and repetitive tasks, as well as solutions for guiding patients around the hospital, all of which help avoid delays and peak times in the hospital process.

Sample logistics

At Hospital of Southern Jutland in Aabenraa, the number of patients has increased by 13 pct., but with the new sample logistics solution, the hospital has managed to cope and even reduce the average length of stay. Intelligent solutions for handling samples help hospitals reduce their sample turnaround-time and subsequently speed up patient diagnostics. Fully automated laboratories improve sample flow by handling and sorting all blood samples without any manual handling, thereby minimizing the risk of errors and freeing up time for value-adding tasks such as patient related work.

Sterile goods and sample logistics

The Capital Region in Denmark will centralize all handling of sterile goods at two departments at Rigshospitalet and Herlev Hospital. With fully automated handling of sterile equipment, the two centers will improve hygiene and reduce the risk of infections. At the same time the budget for purchasing and storing sterile equipment will be reduced because of the just-in-time solution.

The future

Integrated logistics is the next step. Automatic delivery of medicine from the hospital pharmacy directly to the wards and just-in-time housekeeping, based on the hospital discharge system, is already a reality in Danish hospitals. Storage space, which is built directly into the hospital walls, will prioritize short walking distances, large coherent clinical areas and patient related functions.

Denmark is in the process of building 16 new highly specialized hospitals that are all constructed as hospitals of the future, taking into account the changing role of hospitals in our future healthcare system. While optimal hospital logistics is important for all existing hospitals, it is vital for the new, large and specialized hospitals.

We hope that you will find this white paper both innovative and inspiring.
"A safe and efficient supply chain makes up the backbone in a well-functioning Danish healthcare sector and is of vital importance to the hospitals’ employees in order to provide the best possible treatment to the patients. Denmark has already come far in terms of optimizing the field of hospital logistics. Now, a historic billion-dollar investment in new hospital constructions in Denmark makes up a unique opportunity in the years to come to create an even more coherent supply chain to accommodate the future challenges facing the healthcare sector."

Bent Hansen, President of the Danish Regions

Foreword

Denmark strives towards having the best healthcare system in the world. In order to secure and maintain this leading position, and to respond to the increasing pressure on hospitals for providing even better services for fewer resources, Denmark is investing heavily in a new and modernized hospital infrastructure to create a sustainable and even better healthcare sector for the future.

"Denmark has already come far in terms of optimizing the field of hospital logistics."

The construction and modernization of 16 state and regional funded hospitals together with multiple regional hospital projects creates a need for changing the strategic approach to managing the supply chain including hospital logistics in order to fulfill the potential of the massive investment. Thus, rethinking a safe and efficient supply chain encompassing new as well as established hospitals is an important agenda in the Danish healthcare system.

The overall ambition is to enhance coherence in the supply chain and improve the interaction between logistical and clinical processes by creating a foundation for hospital logistics upon which it will be possible to cooperate with the suppliers to further develop joint solutions both inside and outside hospitals and eventually across hospitals and administrative units. Ultimately, innovative solutions within hospital logistics and traceability support a successful operating supply chain in the healthcare sector. These solutions prove their potential to increase patient safety and release resources that can be applied in improving care and time spent with patients. And this is only the beginning.

Bent Hansen
Index

4 Foreword

8 Hospital logistics – a just-in-time concept for hospitals

10 Hospital logistics at New Aarhus University Hospital

11 The right patient at the right time at Aalborg University Hospital

12 Accelerated patient flow through fast turn around time for blood samples

14 Fast sample response time at Hospital of Southern Jutland

16 Fully automatic laboratory at North Zeeland hospital

18 Central Service Departments – efficient and high quality handling of sterile equipment

20 Fully automatic Central Sterile Service Department at Rigshospitalet

21 Sterile goods Tracking at Herlev Hospital

22 Intelligent and integrated hospital logistics

24 AGV takes over distribution of chemo therapy

25 Always a clean bed

26 Innovative Hospital Logistics from Denmark

27 About Healthcare DENMARK
High performance hospitals are essential for healthcare transformation

Healthcare systems around the world are challenged by an increased share of elderly citizens and chronically ill patients as well as more expensive forms of treatment.

More than a decade ago Denmark launched initiatives to address these challenges, where some of the first initiatives were to increase the quality of treatment and increase productivity at the Danish hospitals. This has led to an increase in hospital productivity by 30 pct. since 2003.

The 2007 structural reform of the public sector in Denmark laid the foundation for a new hospital structure and a new division of labor between primary healthcare and hospitals. Comprising 16 hospital construction projects, the Super Hospital Programme is a cornerstone in the new Danish hospital structure where a number of small hospitals are merged into fewer, highly specialized hospitals.

The investment in new hospitals is planned to further increase hospital productivity. On top of the agreed 2 pct. annual increases in overall hospital productivity, the 16 Super Hospitals are required to meet an additional demand for efficiency gains of up to 8 pct.

For these highly advanced hospitals to succeed in constantly improving productivity, new processes and technology are required to enable just-in-time delivery of services and equipment and coordination between all specialties and thousands of patients and staff. This is key to some of the productivity gains that have already been achieved, but also to future improvements and coordination in our future hospital structure.

The Danish hospitals have a great focus on organizational as well as technological development, and the combination of these areas of change offer a perfect opportunity for radical innovation in the field of hospital logistics.
An efficient Danish healthcare sector

Index 2009 =100

- Patient satisfaction
- Healthcare expenditures (share of gross domestic product)
- Productivity of Danish hospitals
A main purpose for establishing the Super Hospital Programme was the need for larger and technologically updated hospitals supporting accelerated treatment. In 2020, the average length of stay in Danish hospitals is expected to be less than three days, and the number of outpatient treatments is expected to have increased by 50 per cent since 2007. Just-in-time logistics will be a key enabler for accelerated treatment, allowing health personnel to be able to focus on their core task instead of searching for colleagues or equipment or waiting for lab results.

Several Danish companies are dealing internationally with complex logistical challenges. Experiences from other industries such as shipping and airport logistics are now being used to design the solutions for the future hospital logistics.

The national solution concept of the future is dealing with these logistical aims:

- Fast handling of samples for analyses
- Provision of services on time and without any errors
- Just-in-time delivery of equipment

The aims are obtained by the use of:

- Knowledge about the location of equipment, personnel and patients
- Transparent task management across the hospital

Service logistics

In ever larger and more complex hospitals, 1:1 communication systems like walkie-talkies and phones have become increasingly insufficient when it comes to service and staff logistics. Resource management in modern hospitals require a high level of transparency across departments, tasks and staff in all functions - from porters and lab technicians.
to nurses and doctors. Knowledge about the location of resources and transparent task management makes it possible to prioritize tasks based on criteria such as distance or importance, increasing the efficiency of service as well as clinical workflows. Moreover, by having the right information at hand, errors are minimized and quality is increased.

Where is the doctor and the nearest equipment?
Why disturb a colleague, if he or she is busy in an examination room? Then it is better to call a colleague who is available and not waste time searching and disturbing.

Why spend time looking for basic equipment, when a quick look at the phone can tell you exactly where the nearest equipment is?

Why run to the laboratory with samples, when they can be delivered automatically from the department directly to the laboratory?

These scenarios are ordinary situations that can be solved by systems for locating people and equipment, and solutions for automating basic tasks. More time will be available for patient related tasks. Several different technologies are useful in this regard and different applications can make use of that information.

Patient logistics
Tracking and locating systems are not only useful in terms of locating equipment or personnel. They can also play an important role in optimizing the patient flow by intelligently guiding the patients to the right location on time. By doing this, peak hours are avoided as clinical staff is not wasting time waiting for the next patient. From a patient perspective, such systems also prevent a stressful experience of being lost in a complex hospital environment.
A national reference architecture has been established to simplify the integration between the RTLS system and applications in order to communicate and facilitate access to data. The reference architecture has the objective to be a common framework for localization and automatic identification. It is based on international standards (GS1) and ensures a loose coupling between applications and the underlying technology and infrastructure for localization and equipment identification.

The systems are thereby strengthened to ensure that they are able to handle future business demands and outside influences despite changes in the underlying technologies.

When the New Aarhus University Hospital is completed in 2019, it will be the largest hospital in Northern Europe, spanning approx. 500,000 m² and employing around 10,000 people. To achieve the productivity targets set for a hospital of this size, a Real Time Location System (RTLS) is necessary to support the logistics processes.

Optimal coordination and utilization of resources require careful planning. However, the constantly changing activities in the hospital make this sort of planning difficult. To overcome this challenge, a full real-time overview of the location of colleagues, patients, and equipment in the hospital enables the hospital personnel to locate their colleagues and needed equipment.

At the New Aarhus University Hospital, a fine-meshed IT system will enable real-time localization of people and equipment right down to room level. This visionary system is unique and has a standardized RTLS infrastructure supplied by Lyngsoe Systems and apps supplied by Systematic enabling in-app search for equipment, bed management, trolley management, and transport logistics optimization.

“The Hospital Logistics solution enables us to optimize coordination and supply within the 500,000 m² of the new hospital.”

“The Hospital Logistics solution enables us to optimize coordination and supply within the 500,000 m² of the new hospital. The just-in-time coordination is key for us in order to meet the efficiency objectives, which must be fulfilled by the new hospital.” - Gert Sørensen, former CEO of Aarhus University Hospital.

The localization of equipment and beds is possible because everything is equipped with different intelligent tags such as radio frequency identification (RFID) and plastic embedded tags. The advantage of using RFID tags is that it is a low-cost solution for tagging equipment, which does not require batteries. Other tags with batteries are used for bed status management. Additional functions can be connected to the system, e.g. Wi-Fi technology for alerts or temperature monitoring.

Hospital Logistics at New Aarhus University Hospital

- Automatic data capture
- Automatic asset identification & localization
- Optimization of hospital logistics

A national reference architecture
A Danish national reference architecture has been established to simplify the integration between the RTLS system and applications in order to communicate and facilitate access to data. The reference architecture has the objective to be a common framework for localization and automatic identification. It is based on international standards (GS1) and ensures a loose coupling between applications and the underlying technology and infrastructure for localization and equipment identification. The systems are thereby strengthened to ensure that they are able to handle future business demands and outside influences despite changes in the underlying technologies.
The right patient at the right time at Aalborg University Hospital

The clinical staff at Aalborg University Hospital uses a Service Logistics solution to coordinate and prioritize the movement of patients from wards to operation rooms and treatments - and back to the wards.

The Service Logistics solution ensures fast and timely ordering of patient movements and equipment around the hospital as all service personnel have easy and mobile access to job lists. When an order is placed by the clinical staff to e.g. move a patient, the system ensures that the task is immediately displayed on the task list directly on the service personnel’s mobile devices.

Similarly, the person who placed the order can follow the status and prepare the next steps because they know exactly when the patient will arrive.

Through the use of real-time location tracking, the Service Logistics solution also knows where all service persons are in the hospital. The same tracking technology can potentially show the status of all equipment. Hence, delays due to missing service personnel, equipment, or beds not being ready for a patient can be avoided, and the hospital achieves further savings on energy and resources.

The Service Logistics solution also collects valuable information about activities and tasks. The analytics functions of the solution assist management in using the data to further optimize future resource allocations and shifts.

The entire clinical staff at Aalborg University Hospital is using the Service Logistics solution on a daily basis and the introduction of the new solution has resulted in a close to 20 pct. efficiency increase.

Based on the positive experiences and benefits, Aalborg University Hospital plans to expand the use of the Service Logistics solution to support other clinical activities where optimized coordination and real-time information can accelerate the patient flow and increase efficiency.
Accelerated patient flow through fast turn-around-time for blood samples

- The transportation time is a major factor in terms of overall efficiency of the blood sample analysis process. Most hospitals work with the concept of turn-around-time (TAT) when measuring their efficiency in processing blood samples. TAT defines the speed of the sample analysis in the laboratory and when this includes high efficient in vitro diagnostics equipment (IVD), the entire analysis process can be carefully measured and controlled.

The challenge is to measure and control the total turn-around-time (ToTAT). ToTAT is a measuring standard that accounts for the entire process cycle of the blood samples, beginning when the blood sample is requisitioned to the analysis results are available. In today’s hospitals, the ToTAT for blood samples can be up to 4-6 hours.

With dedicated and effective logistics systems, it is now possible to have blood samples delivered to the laboratory in seconds without damaging the blood quality. This can potentially reduce ToTAT to approximately 30 minutes.

The new and innovative sample logistics systems are based on pneumatic technology, which, in combination with robot technology, ensures that blood samples are transported from the point of care to the laboratory in a matter of seconds. This process also ensures that a blood sample is untouched by hand from the moment it is dispensed at the point of care and until the test result is available.

With instant delivery of blood samples to the laboratory, hospitals are able to control ToTAT and subsequently bring it down to a minimum – thereby accelerating patient flow and freeing up resources for treatment.
Blood samples are landed in a bulk loader in a fully automatized laboratory.

Blood samples are easily sent and transported with Tempus600 Vita.
Fast sample response time at Hospital of Southern Jutland

In 2014, three hospitals merged to form the Hospital of Southern Jutland, and the Emergency Department for all three hospitals was centralized in Aabenraa. This resulted in new demands on the hospital as the number of patients increased and faster turn-around-times (TAT) on results of blood samples was needed. The ambition was to reduce response time to maximum one hour.

Fast transport of blood samples from the departments to the laboratory is a key factor in reducing the total turn-around-times (ToTAT). This challenge was handled by using a dedicated and automatic system for transporting blood samples and connecting the departments directly with the laboratory. The Tempus600 transport system delivers the blood samples directly in the laboratory in an even flow from the departments, which eliminates manual handling of samples, ensures an even treatment of the samples and frees up resources for patient related tasks. The whole process is fully automated, monitored and IT-supported to ensure that the ToTAT does not exceed one hour.

“Previously, the staff walked from point A to B with the samples, and the process was characterized by manual handling.”

Since the merging of the Hospital of Southern Jutland, the Biochemistry and Immunological Department in Aabenraa has experienced a 13 pct. increase in patient contacts, but with the focus on the ToTAT, the hospital has managed to reduce the average duration of hospital admittance in the Emergency Department.

In 2020, the new Hospital of Southern Jutland is established with an emergency hospital in Aabenraa, a specialized hospital in Sønderborg, and an outpatient clinic in Tønder. To be able to meet the future demands of handling an increasing amount of blood samples and to ensure rapid response time, the hospital plans to implement additional Tempus600 systems.
Innovative robot technology enables the North Zealand Hospital to improve workflow and logistics in the Department of Clinical Biochemistry. A new robot, Gibosort, automate the entire process from handling blood sample tubes, performing the analysis, and sending the test results back to the doctor. With this solution, no manual handling is involved from the moment a sample is taken and until the test result is available in the patients electronic record.

Several of the blood samples analyzed in the hospital laboratory come from the general practitioners. The samples are packaged in special boxes and transported to the hospital. Previously, a medical laboratory technician unpacked the transport boxes manually and prepared the tubes for the automatic analysis system. This process is now handled automatically by a robot. The automatic process reduces TAT for test results to approximately one hour.

General practitioners order the analysis electronically and download a requisition with a barcode. When the transport box with the samples arrives at the laboratory, the robot scans the barcodes and sends the samples with a pneumatic tube to the robotic laboratory where the analysis is performed.

"The amount of automation that Gibosort provides is definitely very interesting – and in our hospital, we see a great future potential for this kind of automation."

Evy Ottesen, Head Laboratory Technologist from the Department of Clinical Biochemistry at North Zealand Hospital.

Faster TAT for lab results and faster responses to general practitioners help speed up patient diagnostics, treatment and patient satisfaction.

The system is the first robotized system of its kind installed at a hospital. The system is designed in close collaboration between the North Zealand Hospital and Gibocare.
Central Sterile Service Departments – efficient and high quality handling of sterile equipment

In the Capital Region of Denmark, the Central Sterile Service Departments (CSSD) for all hospitals in the region will be centralized at two departments in Herlev and at Rigshospitalet respectively. The purpose of centralizing the regional CSSDs is to collect sterile goods from hospitals in the region and process these in fully automated high-performing facilities. The benefits of centralizing the CSSD processes and storage of surgical instruments in the regional facilities are to increase the availability of surgical instruments and to increase the quality of CSSD processes and documentation to a consistently high level with less manual interactions. Furthermore, the automated handling also improves hygiene and reduces the risk of infections.

The two regional CSSDs are fully automatic and use industrial robots to handle manual and repetitive tasks to eliminate manual handling and minimize the risk of errors. The two facilities have identical processes and run repetitive operations in a well-proven concept known from IT data centers. If one CSSD is affected by contamination, fire, flooding, power outage or other incidents, the other CSSD can immediately take over its operations. Both CSSDs are managed by common control and tracking systems and they are able to handle sterile goods for all hospitals in the region, while they are connected to certain groups of hospitals.

An increased turnaround of surgical instruments is expected with less instruments sitting dormant in local hospital department stocks. Instruments needed for acute cases will still be available from small local on-hand stock for fast response, but the majority of instruments will be in daily circulation through the regional CSSDs.

To make the concept of the regional CSSDs work well, it has to ensure that instruments are available for stakeholders in hospitals whenever needed. Trust in the concept is built and maintained by providing accurate and real-time location and tracking information on the whereabouts of instruments, not just inside the CSSD processes, but also on the logistic trail between the CSSD and hospital departments.

This information is provided by RFID (radio-frequency identification) and barcode technology. Instruments and equipment are carefully registered and a sophisticated database tracks and monitors instruments that enters and leaves the automated warehouse and keeps a tally on every single shelf space. Since every product needed at the hospitals and the location of each instrument inside the warehouse is registered in the database, an optimized route can be provided for restocks.

Once instruments leave the warehouse, they can be accurately tracked on their way between the CSSD and hospital departments. The sterile goods tracking solution provides objective tracking information that represents the real logistics flow of instruments and is unedited by any stakeholder. Arrival times for instruments can be predicted based on the tracking information and hospital departments can be notified upon arrival of instruments.

The objective tracking information is also a valid input for optimization of logistics processes as it reveals any delays, bottlenecks and performance deviations in the sterile goods flow.

Detailed and specific registration of instruments and equipment can also provide data to increase patient safety through patient related tracing. This way, patients can be identified later, if they need re-treatment due to problems with certain series of equipment or supplies.
A robot is automating the handling of sterile equipment.
As the first hospital in Europe, Rigshospitalet in Copenhagen will implement industrial robots to empty trolleys with sterile goods in the Central Sterile Service Department (CSSD). Gibocare will supply the solution, which automatically removes instrument containers and transport boxes from trolleys.

An internal transport system of automated guided vehicles (AGVs) eliminates all manual moving of containers around the department, and containers and instruments are automatically transported through the entire process of wash and sterilization.

When the containers arrive to the CSSD, they are guided to the manual work stations in the washing area for unpacking.

If transport boxes are empty upon arrival, they are automatically placed in a wash rack for washing.

When the instruments have been examined and pre-washed by operators, they are placed in a wire basket and a wash rack for washing. After washing, the instruments are transported to the work stations in the packaging area where they are prepared for sterilization and placed in an instrument container.

Mini AGVs deliver the containers to a robot cell that loads and unloads the autoclave automatically.

After sterilization, the instrument containers are brought to the automated warehouse.

The automated warehouse at the CSSD at Rigshospitalet holds 12,000 units. When a surgery is planned at a hospital in the region, data from the hospital surgery booking system is transferred to the CSSD warehouse management system. One or more containers and transport boxes are then allocated to the specific surgery, released from the storage, loaded in a trolley for sterile goods and transported to the hospital. In this way, only surgery specific trolleys are delivered to the hospitals, which reduce waste and unnecessary storage of seldom used equipment at hospitals.
Lyngsoe System provides sterile goods tracking at Herlev Hospital with a tracking solution based on RFID and barcode technology that automatically records the whereabouts of instruments in the circular flow between the regional Central Sterile Service Department (CSSD) and hospital departments.

All transport racks, wash racks, and sterilization racks are equipped with high temperature resistant RAIN RFID tags and barcodes. The solution tracks all instruments and equipment through the decontamination and assembly process to the automated storage and issuing area, where trolleys for specific operations are loaded onto transport wagons.

The solution tracks the transport wagons all the way from the CSSD exit to arrival at the hospital departments and back to the CSSD. RFID readers automatically record the progress of each trolley to arrival at the operating room.

In the operating room, the use of instruments is recorded by the CSSD management system to complete the sterile goods tracking.

All sterile goods tracking information is presented in standard GS1 data format that can be exchanged among stakeholders and hospital applications. Standard GRAI (Global Returnable Asset Identifier) codes are used for all trays, containers, racks, and transport wagons. GLN (Global Location Number) codes are used for all tracking locations. The standard data format enables seamless data analysis across the logistics flow between the regional CSSDs and hospital departments.
The New Odense University Hospital (New OUH), which will be ready by 2025, is constructed with an ambitious vision for the hospital supply logistics: The new logistic solution will drastically reduce the hospital's operating costs and reduce the physical layout of the hospital and thereby ensure large clinical areas with short walking distances and a floorplan that prioritizes clinical and patient related functions.

"Logistics is the element in the planning and construction of a new hospital that unifies the science of engineering, management, and clinical flows. The planning of logistics should be carefully coordinated with operations in the new hospital with emphasis on patient flow and business architecture. By doing so, it is possible to ensure that the work affected in the construction of the hospital is based on the requirements for future patient flow - for example in the work associated with realizing efficiency requirements."

The New Odense University Hospital plans to implement a new storage concept, which eliminates the need for decentralized depots by integrating storage space in the walls of the new hospital. The concept is based on a network of conveyor belts and lifts that connects central production support functions such as pharmacy, laboratories, Central Sterile Service Departments, depots, stock delivery, and kitchen with automated storage shafts at each department. The shafts are located for every 25 meters in the building and this physical network is combined with a small fleet of Automated Guided Vehicles (AGVs) as well as a pneumatic tube system. This fully automated storage solution can make just-in-time supply a reality in the new hospital because hospital staff can make orders on their tablet for immediate pick-up at the nearest storage shaft. It is expected that frequently used or frequently ordered items will arrive within a minute and items seldom used on the ward can be delivered from other parts of the hospital within 5 minutes.

The system can address up to 90 pct. of the internal logistics tasks. Supplies, goods, and equipment no longer take up expensive storage space on every ward in the hospital; instead supplies will be available throughout the hospital from any ward when and where they are needed. Staff no longer has to keep inventory on the ward and manage storage facilities. Time spent retrieving, ordering, transporting, and handling supplies can be reduced considerably, which give staff more time to focus on patient related tasks.

The new concept is expected to reduce stock levels because the complete storage content will be accessible across the hospital - allowing supplies to be shared between departments and wards.

Short and easy access to supplies outlets is expected to shorten walking distances for the clinical staff.

"Logistics is the element in the planning and construction of a new hospital that unifies the science of engineering, management, and clinical flows.”

Intelligent and integrated hospital logistics
New OUH logistics and supply system

Makes supplies available throughout the hospital from any department when they are needed and where they are needed.

Significantly reduces risk of cross-contamination and infections by separating clean from unclean, encapsulating materials during transport and storage and restricting access to storage space.

Reduces time and resources spend finding, ordering, transporting, and handling supplies by automating logistics and allowing clinical staff to focus on patient related tasks.

Improves working environment by reducing need for manual lifting and handling of supplies.

Can be used for almost all types of supplies that can fit in the transport boxes – replaces the need for several transport and storage systems with one shared transport and storage system.

Reduces storage space needed by utilizing the full building and floor height for storage.

Reduces waste by providing an always up-to-date inventory of all stored supplies and allowing older supplies to be used before they reach expiration date.

Is reliable, redundant and robust in its design supporting hospital operations and emergency procedures.

Reduces stock by making the complete storage contents accessible from any department allowing supplies to be shared safely between departments.
Two years ago, the Oncology Department at the Hospital of Southern Jutland in Sønderborg had to relocate. From being situated directly above and in direct connection to the laboratory that administers the chemotherapy, the department relocated two tower blocks away and three stories up from the laboratory. Transport needs increased since delivery times for chemotherapy went from 15 seconds to over 10 minutes.

To overcome the increased transportation times, the Hospital Pharmacy opted to try a MiR100 based Automated Guided Vehicle (AGV) solution from Mobile Industrial Robots to transport medicine back and forth. This frees up staff to focus on patient-related work instead.

The AGV, dubbed ‘Ejnar’ by hospital staff, safely navigates through the complicated hospital environment of beds and patient traffic and is even capable of taking the elevator on its own. If it gets stuck, it automatically sends a text to department staff who can reroute or remote control it via their smartphone. Once it reaches the department, it calls out for staff to let them know. The medicine is carried in drawers, which are accessed by code to avoid the use of keys.

Ejnar has become an integrated part of the hospital environment and it is not uncommon to hear patients yell out “Hi Ejnar!” at the AGV or even talking to it when it passes in the hallways.

Financially, the ROI (Return of Investment) of the AGV was no more than eight months.

The first AGVs in hospitals were typically used to transport goods through basement corridors but with the positive ROI and experience of using AGVs to also distribute medicine directly to patient areas, the Hospital of Southern Jutland expects to expand with more of this type of AGV in the future.
Housekeeping in hospitals is a critical function, as focus on hygiene standards and their influence on infection control in the hospital environment increases. Housekeeping is also under constant pressure to reduce cost without compromising the standard of cleaning.

As patient flows in hospitals accelerate, the demand for more flexible cleaning standards and methods increases to ensure that hygiene standards are constantly met.

Systematic and Aalborg University Hospital are considering a new solution to support the hospital housekeeping. The solution is digital and transforms today’s paper-based planning of cleaning tasks into a flexible real-time platform where cleaning tasks are scheduled and executed in close collaboration with the departments of the hospital.

The system uses machine learning to predict the daily workload and thereby the status of the different cleaning plans. This supports the management in re-allocating resources throughout the day to optimize the cleaning efforts across the hospital. The result is better cleaning at a lower cost because it is possible to focus on critical cleaning tasks and postpone non-critical cleaning tasks and at the same time keep electronic documentation.

The project is one of the first to focus on housekeeping and provides the service department with modern digital support to optimize the overall hospital logistics.

Cleaning logistics includes:
- Registration of cleaning plans
- Grouping of tasks to support the organization forms that are specific to the hospital
- Smartphone-based viewing, updating and adding tasks
- Smartphone-based support for local collaboration and re-planning
- Monitoring of progress to support re-planning
- Real-time cleaning status to support best in class audit of cleaning quality

Always a clean bed
Innovative Hospital Logistics from Denmark

For more than 100 years, Denmark has been a world leader in logistics. Since the change from sail to steam powered transportation in the early 1800s, Danish companies have been driven by an innate desire to provide their products and services all over the world and consequently, they have perfected efficient logistics systems to be the world’s best.

Globally renowned Danish companies like Maersk, Lego, and Vestas are world leading experts in complex logistics services that carry a significant part of the world trade among continents, supply small colorful bricks for children all over the world, and commission the world’s largest wind turbines, all in even the most remote parts of the world.

Danish logistics system solutions also play a vital role in supporting the logistics in a large part of the world’s airports and Danish logistics system providers measure and ensure visibility and quality in 80 pct. of the largest homogeneous supply chain in the world – the postal logistics systems.

When this international logistics experience and know-how from other industries is matched with a healthcare sector that is known for a century long focus on public-private cooperation, unique things happen and new concepts are created.

The central driving force behind the innovation is the need to transform Danish healthcare and to re-define the role of our hospitals in our future healthcare system. The transformation began almost a decade ago with the structural reform of the public sector in Denmark. The reform created a need for solutions and concepts that optimize hospital efficiency and a logistics set-up that enables very large and highly specialized hospitals to operate with maximum efficiency.

Through this perfect storm of needs for new solutions, know-how from other industries, and a tradition for public-private innovation, the concept of Hospital Logistics that we have presented in this white paper, became a reality. But it is not only a concept. In this white paper, we have also presented cases and experiences from hospitals, where these new solutions are implemented.

Contact Healthcare DENMARK if you want more information about hospital logistics or if you want to follow the next level of innovation within this concept. You can also request a delegation visit on the Healthcare DENMARK homepage if you want to visit Denmark and the hospitals presented in this white paper.

Hospital Logistics create just-in-time solutions everywhere in the hospital and this is achieved by combining a wide range of know-how and technology with in-depth clinical insight and expertise.

Danish strongholds are based on the world leading position that Danish companies have achieved in other industries like postal and airport logistics and the Danish tradition for close public-private innovation.
Healthcare DENMARK is the international gateway to Danish healthcare expertise and innovation. Our aim as a non-profit public-private partnership is to internationally benchmark Danish best practices within healthcare.

The goal of Healthcare DENMARK is not to sell or promote any specific products or solutions, but to communicate the strongholds of Danish healthcare. We do this by attracting health politicians, decision-makers, and journalists to experience Danish healthcare solutions in practice and meet the people behind. Our network is an extensive pool of public sector, private companies, and other actors in the area of healthcare – all dedicated to providing excellent and efficient healthcare as well as sharing best practices across borders and professions.

“In Denmark our focus on putting the patient first – combined with efforts to improve efficiency and quality – has resulted in a wide array of innovative solutions. I sincerely believe Danish solutions and expertise can have a positive impact on global health.” - Her Royal Highness Crown Princess Mary of Denmark

If you would like to learn more about our world-renowned healthcare, we can assist you with tailoring a visiting program, setting up meetings, and arranging access to otherwise off-limits areas and people within both the public and private sectors, as well as assist you with local accommodation and transportation.

Healthcare DENMARK has a national and political mandate to provide this service to politicians, relevant top and management level professionals, and journalists working with healthcare.

Backing this public-private initiative is a partner group of both public and private key actors within Danish healthcare, including the Ministry of Health, the Ministry of Foreign Affairs of Denmark, the Ministry of Industry, Business & Financial Affairs, Danish Regions, Region of Southern Denmark, the Confederation of Danish Industry, the Confederation of Danish Enterprise, Falck, KMD, Systematic, OpenTeleHealth, Copenhagen Healthtech Cluster, Public Intelligence, and Vendlet.

Her Royal Highness Mary, Crown Princess of Denmark is patron of Healthcare DENMARK.

Visit www.healthcaredenmark.dk to learn more about some of the world’s best and most innovative healthcare providers and companies or to request meetings with the stakeholders who are future-proofing healthcare sectors around the world.

Stay updated with our newsletter
Visit our website healthcaredenmark.dk and sign up!